
DEIC FILE COP' 

LOY MASSACHUSETTSLABORATORY FOR tINSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCSfIM-431

THE EMERGING THEORY OF
N0 AVERAGE-CASE
N COMPLEXITY
N

I

Robert E. Schapire

DTIC
ELECTEJU 1J

June 1990

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Th .Wt 0TM00 A

'~"~_.0 06 18 306



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASIFICATION lb RESTRICTIVE MARKIIGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N00014-89-J-1988

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science (if applicable) Office of Naval Research/Dept. of Navy

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I (if applicable)
DARPA/DOD

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Blvd. ELEMENT NO. NO. INO ACCESSION NO.
Arlington, VA 22217

11. TITLE (Include Security Classification)

The Emerging Theory of Average-case Complexity.

12. PERSONAL AUTHOR(S)

Robert E. Schanire
13a. TYPE OF REPORT 1W3b TIME COVERED 114. DATE OF REPORT (Year, Month, Dy 1.PG ON

Technical 17

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Complexity, average-case complexity.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Abstract

This paper reviews some of the ecent results th have emerged in the study of average-case

complexity. Included is a descriptio of Levin's fr ework for studying average-case complexity,

as well as his proof of the existence of omplete problems for a class of distributional problems.

The paper also presents some new results, including a natural and more liberal extension of

Levin's model, in addition to a partial characterization of the relationships among the new

average-case complexity classes.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

(3 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Judy Little (617) 253-5894

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*tLS 00sn.mt PFlrkb q 1111111-11404
Unclassified



The Emerging Theory of Average-case Complexity

Robert E. Schapire

MIT Laboratory for Computer Science
Cambridge, MA 02139

June 11, 1990

Abstract

This paper reviews some of the rece t results that)ave emerged in the study of average-case
complexity. Included is a description o Levin's f'r -work for studying average-case complexity,
as well as his proof of the existence of complete' problems for a class of distributional problems.
The paper also presents some new results, including a natural and more liberal extension of
Levin's model, in addition to a partial characterization of the relationships among the new
average-case complexity classes. (" p. .

Keywords: Complexity, average-case complexity.

1 Introduction

A primary contribution of theoretical computer science has been the identification of the so-called
NP-complete problems, a well-known class of problems provably equivalent to one another in worst-
case computational complexity, modulo polynomial-time computation. These problems, being the

95-hardest--i he class NP, are widely believed to be unsolvable by any polynomial-time algorithm,
and indeed, no sub-exponential time algorithm is known for any NP-complete problem.

Nevertheless, at least since the late 1970's, algorithms have been known that can solve as-
sorted NP-complete problems in polynomial-time in the average case, i.e., whose expected running
time on an instance chosen randomly (according to some "natural" distribution) is bounded by
a polynomial. Johnson [131 surveys a number of these results, including, for instance, expected
polynomial-time algorithms for finding Hamiltonian circuits in random graphs, and for 3-coloring
random graphs. Typically, such algorithms are based on the observation that almost all random
instances have some easily observed property that makes the decision problem trivial; the remain-

ing few instances can then be solved by an exponential-time, brute-force algorithm. For example,
almost all random graphs contain 4-cliques which make them trivially non-3-colorable; in the ex-
tremely unlikely event that the randomly chosen graph does not contain a 4-clique, a brute-force
strategy can be used to determine if the graph is 3-colorable.

Given such results, one may naturally wonder whether there exist any algorithms that are
"hard" on average, and if so, how one might go about identifying such problems and proving their
hardness. One approach, first suggested by Levin, is to follow the strategy set forth in the theory

This paper was prepared with support from ARO Grant DAAL03-86-K-0171, DARPA Contract N00014-89-J-1988
and a grant from the Siemens Corporation.

Author's net address: rs(theory.Ics.mit.edu.



of worst-case complexity of proving completeness for a class of problems using some appropriate
notion of reducibility. Levin [14, 15] introduced his notion of average-case completeness, analogous
to the usual worst-case completeness, in 1984. In his setting, problems consist of two parts: a
decision problem, and a distribution on instances. The class DistNP consists of those problems
whose decision problem is in NP, and whose distribution is computable in polynomial time (more
details in later sections). Levin shows that a tiling problem, under an "almost" uniform distribution
on the instances, is complete for DistNP. Thus, if this tiling problem is computable in polynomial-
time on average, then so is every problem in the class DistNP - seemingly strong evidence that
the problem is hard on average.

Levin's original paper was virtually incomprehensible in its terseness, recommended by John-
son [13] only for "cryptoanalytically inclined readers." Fortunately, Gurevich [9], Gurevich and
McCauley [10] and Goldreich [5] have since provided the community the valuable service of deci-
phering and explaining Levin's one-and-a-half page note in expositions that far exceed Levin's both
in length and clarity.

Gurevich [6, 9, 8] also managed to prove the completeness for DistNP of a few other moderately
natural problems, and Venkatesan and Levin [171 were later able to find a complete graph coloring
problem. Nevertheless, in general, there has been a great dearth of such results, sharply con-
trasting with the hundreds of natural problems known to be NP-complete [4]; apparently, proving
completeness for DistNP is much harder than for NP.

In the meantime, some theoretical aspects of average-case complexity, such as the relationship of
DistNP to other complexity classes, have been studied by Gurevich [6, 9] and Ben-David et al. [2].
Some of these will be described in later sections.

In this paper, I will review the development of the theory of average-case completeness outlined
above. Where possible, I have also tried to make contributions to this theory. Among these
contributions is an alternative characterization of "polynomial on average" that seems to simplify
some of the proofs found in the literature, and that perhaps is more intuitive than the "standard"
definition proposed by Levin to which it is equivalent. I also introduce in Section 4 a new and
more liberal notion of "easy on average" that may be more appropriate in some settings. Finally,
in Section 5, I have organized and contributed to what is known about the relationships among the
various new average-case compl'xity classes.

2 A model for studying average-case complexity

The notation and terminology presented in this section are adopted for the most part from Gol-
dreich [5]. We will assume for simplicity that E = {0, 1} is our input alphabet, and that E*, the
set of finitely long strings over E, is ordered in the usual '-,- rographic order: 0, 1,00,01, ... (To
avoid irritating difficulties at a later point, the empty strii. is -nitted.) We write x < y if x comes
before y in this ordering, and we denote by fxj the length o, in symbols.

We begin with a discussion of distributions. Naturally, the average-case behavior of a program
is dependent upon the distribution against which the "average" is being taken. A density function
is a real-valued function p' : * -- [0, 1] mapping strings to values between 0 and 1. and for which

xEE- *U'(x) = 1. Thus, j'(x) can be interpreted as the probability that x is chosen. The associated
distribution function p : E* --. [0, 11 is defined by

Clay = aa.

Clearly,u~ is nondecreasing and approaches 1 asymptotically.

2



A distributional problem is a pair (D, 1) where D : E* --* {0, 1} is a Boolean predicate, and y
is a distribution function.

Defining easy on average

As a first step to developing a theory of average-case complexity, we will need a set of careful
definitions that express appropriately what is meant intuitively by a problem that is easy or hard
on average.

We need first a notion of what it means for a function f : E* --* R+ to grow "polynomially on
average." It turns out that the most natural and intuitive definition of such a notion suffers serious
deficiencies. In particular, such a definition might require that

nit n(x), f (x) < 0O(n k) (1

for all n and some constant k, where u4n(z) = ji'(x)/V xj=n'(x). Thus, this definition requires
that the expected value of f over inputs of length n be bounded by a polynomial in n.

Goldreich [5] and Gurevich [7] give several arguments why this is not the "right" definition.
Briefly, these difficulties arise from the fact that the definition is not closed under composition with
a polynomial. As a result, the definition is not machine-independent - i.e., an algorithm running
in polynomial time on average (under this naive definition) on one Turing machine may no longer
have this quality if the machine model is altered slightly. The definition is also dependent on the
manner in which the instances are encoded; for instance, Goldreich gives an example of a graph
algorithm that is fast when the input graph is encoded by its incidence matrix, but is slow when
the graph is encoded by an adjacency list.

Levin [151 introduces a definition of polynomial on average that, though less intuitive in appear-
ance, succeeds in overcoming these shortcomings. Namely, a function f : E* --+ R+ is polynomial
on average with respect to distribution p if there exists some constant 6 > 0 such that

Z 11(X).- < 00.
xEE I XI

Here I propose an alternative, equivalent formulation of polynomial on average that may be
more intuitively appealing, and that will be useful ii, proving some of the results that follow.

This formulation also generalizes more smoothly to other notions, such as logarithmic on average,
considered by Ben-David et al. [2].

A function f : E* -- R+ is usually bounded by a function p : N x R+ --R R+ with respect to
distribution p if, for all c > 0,

Prp Vf W > A~ X , I/,)] < C,,

where the probability is computed over x chosen randomly according to p. Thus p( ., l/E) bounds
f for all but c of the instances.

When p is restricted to be a polynomial, we obtain Levin's notion of polynomial on average.

Lemma 1 Let f: Z -* - R+ , and let IA be a distribution function. Then f is polynomial on average
if and only if f is usually bounded by a polynomial (with respect to p). 0

0
Proof: Let b > 0 witness that f is polynomial on average. Then the expected value of f(x)6/Ixl
is bounded by some number N. By Markov's inequality, it follows that, for c > 0,

Pr, f(x)6 > N <,P I C < Avati1LbIa ty Codes
A-eij and/ 9r

3 Meat Special

Ai



or equivalently, r 1/>C

That is, f is usually bounded by the polynomial (Nix /c) 11' .
Conversely, suppose without loss of generality that f is usually bounded by the polynomial

(kIxi/Vj7)k, for some constant k > 0. It follows that, for c > 0,

" f(x)l/k k 1
Pr, X-'-- > ± <,

and so, for t > 0, [ f(x)l/k 1 V
Prp lxi <>Tj <

Thus,

E. "f,)lk" < 0 -- Pr, [t - 1 < f()l/k < t •

= Pr I > tI

00< 1+ k 2 . E t - 2 < 0 ,

t=1

and therefore 1/k witnesses that f is polynomial on average. U
It is now easy to see why this definition of polynomial on average is closed under composition

with a polynomial: if f is usually bounded by polynomial p, then clearly fc is usually bounded by
polynomial pC, for any constant c > 0.

Also, it is not hard to show that the "naive" definition of polynomial on average implies the
correct definition. For suppose f satisfies Equation (1) so that, for some k > 0,

E,.. [f (x)] < kn k .

Then by Markov's inequality, for c > 0,

Pr, . {f(x) > kn'/cj] < c.

This implies that
Pr, [f(x) > klx Ikic] <C

and so f is usually bounded by the polynomial kix ik/C.
Thus, an algorithm A that runs in time polynomial on average can be thought of as follows:

given c > 0 and a randomly chosen instance x, A halts in time polynomial in lxi and 1/c with
probability exceeding 1 - c. Note again that this probability is over the random choice of x, and
not over any kind of randomization of A. (In fact, we will usually only consider deterministic
algorithms.)

We say that a distributional problem (D,,u) is polynomial time on average if there exists a
Turiqg rmachine that decides D whose running time is polynomial on average with respect to A.

4



Reducibility

We will next require a notion of reducibility. Such a notion should have the property that if (DI,1 ,)

is reducable to (D 2 ,p 2), and if (D 2 ,Au2 ) is polynomial on average, then so is (DI,IL).
More formally, we say that a function f : E* - E* reduces distributional problem (DI,pl) to

(D2,/12) if

1. f is computable in time polynomial on average (with respect to P);

2. for all x E ,*, DI(x) = V2(f(X));

3. for some constant c > 0,

-2(liE! '( ) -

The first two conditions on f axe straightforward - the first requires that f be efficiently
computable (on average), and the secord requires that f be valid in the sense that true instances of

D1 are mapped only to true instances of D 2 . The third condition is something nw: here we require

that common instances of DI not be mapped to rare instances of D 2 , and that the distribution
induced on D 2 by p, and f not be "too far off" from p2.

The term "domination" is used to refer to this relationship between distributions. Thus, distri-

bution p2 dominates pI if there exists a constant c > 0 such that p'(x) > JIx-C,'(x) for all x E E'.
Thus, the last condition of the above reducibility definition states that A2 dominates the induced
distribution pif defined by

14lf(X) = Z 1(y).
yE ! '(.)

Finally, we are ready to prove the following theorem which justifies the preceding definitions:

Theorem 1 Let f reduce (DI, pl) to (D 2 , p 2 ), and suppose that (D 2 ,p 2 ) is polynomial on average.

Then so is (DI, pl).

This theorem is presented in detail by Goldreich [51 and is re-proved here as an exercise in the

characterization of polynomial on average provided by Lemma 1.
Following Goldreich, we break the proof into two steps:

Step 1 Let tif be the distribution on instances of D2 induced by p and f, and suppose that

(D 2 ,plf) is polynomial time on average. Then so is (DI,pl).

Proof: By Lemma 1, there exists an algorithm B solving (D 2 , p2) in time tB(x), a function usually
bounded by some polynomial pB(IXI, 1/C) with respect to plf. Likewise, f is computable in time
tt(x) which is usually bounded by some polynomial pj(JxJ, I/c) with respect to j1I. An instance

z is computed in the obvious manner as A(x) = B(f(x)) in time tA(x) = tf(X) + tB(f(x)). Then

tA(x) is usually bounded by the polynomial pA(4 1/) = pI(Ix, 2/1)+ pB(pf(1x4,2/c), 2/f). This
can be seen as follows: given c > 0,

PrIA, [tA(x) > PA(tXI, 1/C)] s Pr,.1 [[tf(x) > pf(Ix, 2/c)] V [tB(f(X)) > pB(pf(Iz, 2 /), 2/0)])
= PrIL [tj(x) > pj([rI,2/c)]

+Pr,, [[tf(x) !5 pf(Ixl,2/c)] A [tffx)) > PB(Pf(IxI, 2 /c), 2 /c)]]

< - + PrA, [tB(f(x)) > pB(If(x)I, 21c)]
2
2 + risf [tB(X) > P (x,1)

<

5



where the second inequality follows from the fact that If(x)l < tj(x). Thus, tA is usually bounded
by a polynomial as claimed and (Di,pl) is polynomial time on average. U

Step 2 Suppose P2 dominates 1A, and that (D, p 2 ) is polynomial on average. Then so is (D,pL).

Proof: Let c > 0 witness that P2 dominates P1, and suppose A solves D in time tA(X) which is usu-
ally bounded by pA(Ixf, 1/c) with respect to P2. Then tA(Z) is usually bounded by pA(Ixl, 21xlC+ 2/c)
with respect to p: given c > 0,

00

Pr., [tA(X)> PA(IXI,2I--2/E)] Pr., [[IxI-n A[tA(X)>pA(n,2fl+? )I]

ni=1_E nc n Prm: [IA(x) > pA(l, 2nc+21 E)]
n=1

00

< Enc 
E

n= 2n O+-- -- < E
n ---

Together, Steps 1 and 2 clearly imply Theorem 1.

3 Average-case completeness

Using this notion of reducibility, Levin was able to show that there exists a problem complete for
a whole class of problems, i.e., a problem to which every other problem in some class is reducible.
Thus, he succeeded in identifying a "hardest" problem in some class which therefore can only be
polynomial on average if every other problem in the class is as well.

To prove his main theorem, it was necessary for Levin to make some "niceness" assumptions
about the distributions he was working with, namely, that they be polynomially computable. Specif-
ically, a distribution p is polynomially computable if there exists a polynomial-time Turing machine
that, on input x, computes p(z) as a binary rational number. Note that the Turing machine must
compute p(x), the probability of choosing any string y < x. This is a stronger condition than the
requirement that the density p'(x), the probability of choosing x, be computable. Goldreich [51
shows that this is a strictly stronger condition if P# #P.

(Strictly speaking, some of the distributions described in this paper take on irrational values.
However, all of these distributions can be accomodated by relaxing this definition to require only
that the function cp be polynomially computable for some constant c > 0. This relaxation does
not detract from any of the results described in this paper.)

We are now ready to introduce the class of distributional NP problems, or DistNP. A distribu-
tional problem (D,p) is in DistNP if D is in NP, and p is polynomially computable.

Note that, even to show that a problem in DistNP requires more than polynomial time in the
worst case (let alone on average) is to show that P $ NP. Thus, such a result seems unlikely.
Nevertheless, it is possible to find a complete problem for DistNP. A distributional problem (D, p)
is complete for DistNP if (D,p) is in DistNP, and every other problem in DistNP can be reduced
to (D,p). Thus, if (D,p) is polynomial time on average, then so is every problem in DistNP.

A problem complete for DistNP

Levin [15] showed that a tiling problem under a near uniform distribution is complete for DistNP.
On close analysis of his proof, Goldreich [5] and Gurevich [9] found that Levin's proof could be

6



simplified by first showing that a generic bounded halting problem is complete, a problem that can
then be reduced to tiling.

In particular, the Bounded Halting Problem is the following:

Instance: An encoding M of a nondeterministic Turing machine, a word x, and a number t in
unary.

Question: Does the machine encoded by M accept x within t steps?

Distribution: The values of t, IMI and lxI are chosen first with probability proportional to an
inverse quadratic. Then M and x are chosen uniformly from all strings of the given length.
Thus, p'(x) c IMI-2• 2-I. Ix-2 . 2-1x . t- 2 .

Levin's main result (as interpreted by Goldreich) is the following:

Theorem 2 The Bounded Halting Problem is complete for DistNP.

Proof: Goldreich [5] gives a clear and careful proof of this theorem. Here I only try to distill some
of the main ideas. Let (BH, ABH) denote the Bounded Halting Problem when decomposed into the
associated predicate BH and distribution I'BH. That (BH,I-BH) is in DistNP is easily verified.

Let (Dt) be any distributional problem in DistNP. We wish to reduce (Dt) to (BH,j1BH).
We know that D is accepted by some nondet-rministic machine M with running time bounded by
some polynomial p. The usual (worst-case) reduction of D to BH would map an instance x of D
to instance (M,x,p(Ix)) of BH. The problem with this reduction is that it fails the domination
condition: an extremely common instance with probability, say, Ix- 2 gets mapped to a far rarer
instance with probability proportional to IxI- 2 2-1x1.

The main insight needed to overcome this difficulty is the following: We would like to map every
instance x to the shortest string possible since 1BH assigns higher probability to shorter instances.
Moreover, if x is a very common instance (so that p'(x) is large), then x can be more compactly
represented using the (polynomially computable) function it.

In particular, x can be encoded by any fraction in the interval (p(x - 1), M(x)], where x - 1 is
the predecessor of x. Furthermore, such an encoding can be efficiently and uniquely decoded using
a kind of binary search since ju is polynomially computable. Finally, note that there always exists
a fraction ac(x) in this interval whose binary expansion is of length lg(1/p1'(x)) + 0(1).

Thus, any string x can be efficiently encoded by C,(x), the shorter of x itself and a,(x). Note
that the density on strings induced by this compression scheme is very fiat - every string has
density O(2-111). Note also that there exists a Turing machine M, that, given a compressed string
C,(x), first decodes x, and then (nondeterministically) simulates M on x to decide D(x) in time
bounded by some polynomial p,,(IxI).

The rest of the reduction is straightforward: an instance x of (D, p) is mapped to
(M.,C ,(x), iPM(x)). It can be checked that this reduction now satisfies the domination condition.

U

Other complete problems

So Bounded Halting is a canonical problem complete for DistNP. With this proved, it is possible to
prove the completeness of a handful of other problems to which Bounded Halting can be reduced.
For example, a straightforward reduction shows that the following variant of the tiling problem is
complete:

7



Instance: A set of "legal" tiles L C 4, each labeled in the corners with one of the twenty-six
letters of the Roman alphabet JZ; a number t in unary; and a legal string a of tiles from L of
length at most t.

Question: Can o' be extended to a tiling of a t x t square using tiles only from L?

Distribution: L is chosen uniformly at random from 7Z4 , t is chosen with probability proportional
to t -2 , (a] is chosen aniformly from {1,... ,t}, and a is chosen uniformly from all legal strings
of this length.

In a standard reduction, an instance (M,z, 1t ) is mapped to (Lo, a, It) where L0 encodes the
legal computations of a universal Turing machine, and a encodes (M, x). Since Lo has some constant
probability of being chosen under the above distribution, the domination condition is satisfied. This
is exactly why such a reduction succeeds in this case, but is bound to fail in others.

For example, in the standard proof of the NP-completeness of satisfiability of CNF formulas,
the computations of a Turing machine are encoded not in one place (such as the set of legal tiles
in the tiling problem), but rather it is encoded again and again throughout the formula. More
specifically, if xij represents the j-th bit of an instantaneous description of the encoded machine M
on the i-th step, then xij is some function of some other variables x(jj)j , which can be encoded by
a constant length formula. However, whatever this formula is, it must be repeated for each variable
xij, and the chance of such a repetition of this pattern occurring in a random formula becomes
exponentially small. This appears to be the primary reason why it has proved so difficult to show
the completeness of other more natural problems.

Nevertheless, Venkatesan and Levin [17] did manage to come up with a graph coloring problem
that is hard on average. Their result is interesting and surprising because graph problems have
until now proved to be an excellent source of NP-complete problems that are easy on average. Their
technique is also of interest: in essence, they prove their hardness result using the very methods
used in the past to prove the easiness of other random graph problems.

Here is a description of the problem they consider: Let G be a directed graph, each of whose
edges has been assigned one of the four colors blank, black, red or green. A spot is an induced
three-node, unlabeled subgraph of G. The coloration of G, denoted C(G), is the set of all spots of
G.

Their random graph coloring problem can be stated as follows:

Instance: A directed (uncolored) graph G, a coloration C, and a number k.

Question: Can the edges of G be colored so that C(G) = C, and so that the number of blank edges
is exactly k?

Distribution: C is chosen uniformly, JGJ is chosen with probability proportional to IG-2, k is
chosen uniformly from {1,...,IGI}, and G is chosen uniformly from all graphs of size IGI
(i.e., each edge is present with probability 1/2).

Venkatesan and Levin's main result is a proof that this problem is complete for DistNP. They
prove this by a randomized reduction from Tiling (or from Bounded Halting). That is, an instance
of Tiling is mapped by a randomized function f to one of a number of possible instances of the
graph coloring problem.

Here I sketch some of the high-level ideas of their reduction, which I find easier to think about as
a direct reduction from Bounded Halting rather than Tiling. Let (M, x, It) be a Bounded Halting
Problem instance. Such an instance is mapped to a graph G on O(t 2 ) vertices. This graph is

8



random, except for the requirement that it have a number of features. The most important of these
is an embedded t x t grid of t2 vertices; that is, each vertex vij of this grid is connected to v(i+I)j
and vi(j+l). This grid is where the computation of a universal Turing machine is simulated. the
coloring of the grid encodes the time-space history of the Turing machine in the usual manner.

The graph G has a number of other features that together with the chosen coloration Co, ensure
the coloring of this grid is in conformity with the computation of a universal Turing machine on
(M,x), and thus that the graph be colorable if and only if (M,x) is accepted. This part of the
reduction falls into the standard paradigm used in (worst-case) reductions of building "gadgets"
to force a particular behavior. What is new is their construction of a graph with features that
are likely to be contained by a large fraction of all graphs. That is, they show that an (entirely)
random graph will have all of the required features with probability at least i/nc fu r some constant
c > 0, and thus they are able to show that their reduction satisfies the domination condition.

An incompleteness result

As mentioned above, Venkatesan and Levin's reduction is randomized. It is not hard to modify
Theorem 1 to show that, if f is a randomized function reducing (DI,pi) to (D 2 , 2 ), and (D 2 , / 2 )
is solved in polynomial time on average by a randomized Turing machine, then so is (D1, II).

In fact, it turns out that the distributional graph coloring problem described above cannot be
proved complete if only deterministic reductions are allowed: an interesting result of Gurevich [6, 9]
shows that if it is "too close" to being uniform, then the distributional problem (D,,u) cannot be
complete for DistNP. I close this section with a description of this intriguing result.

A distribution y is said to be flat if there exists a constant b > 0 such that for all x E E*,
1(x) _< 2- I' 1S. Thus, each instance has very low density. 1'9te that PBH described above is not
flat since, by fixing M and x, and allowing t to grow, we can find strings of density proportional
to I(M,x, ,)1- 2 . On the other hand, the distribution on Venkatesan and Levin's graph coloring
problem is fiat.

Below, Exp (NExp) is the set of decision problems accepted by deterministic (nondeterministic)
Turing machines in exponential (i.e., 2' 0 ( )) time. The proof of Gurevich's theorem is onitted.

Theorem 3 Let (D,4) E DistNP, and suppose p is flat. Then (Dt) is not complete for DistNP,
unless Exp = NExp.

4 Easier than easy on average

In this section, I propose a natural liberalization of the notion of easy on average that seems to
have been overlooked in the past.

The standard notion of easy on average described in Section 2 requires that there exist an
algorithm for solving the decision problem that is always correct - that is, the algorithm must
find a certificate that justifies its answer. Thus, for example, it is not enough in deciding graph
3-colorability to observe that most graphs are not 3-colorable - an algorithm must certify that the
given graph is not 3-colorable, for instance, by finding a 4-clique.

In some applications, this requirement may be too strong. For example, in designing a pseudo-
random bit generator, one would like to say that an adversary is unlikely to guess the next generated
bit by any means. It is irrelevant in such a setting whether the adversary has a certificate of the
value of the bit - only that he can make a reasonable guess.

The formalism for such a liberalization is motivated by the characterization of polynomial on
average given by Lemma 1. Recall that this definition states that a Turing machine M solves a

9



distributional problem (Dq) in polynomial time on average if there exists a polynomial p such

that, for all e > 0,
Pr , [tM(x) > p(x, I/1)] < e

where tM(x) is M's running time on input x. Note that if M's computation is cut off after p(z, 1/c)
steps (and M is forced to output a default value if it is not yet finished), then the probability that

a correct answer is output exceeds 1 - c.
This suggests the following definition: A Turing machine M solves distributional problem (D, t)

approximately in polynomial timt if, for all c > 0,

Pr, [M(x, c) i D(x)] < c

where the probability is over random choices of x (according to p). Furthermore, M's running time
must be polynomial in IxI and 1/c.

Note that Theorem 1 can easily be modified to handle reductions in which f is only approxi-
mately computable. Then if f reduces (DI, i) to (D 2 , A2 ), and (D 2 ,A 2 ) is approximately solvable
in polynomial time, then so is (D 1,p 1 ). In particular, this shows that the Bounded Halting Prob-
lem, as well as the other problems described in Section 3, are complete under such approximate
reductions. Thus, if the Bounded Halting Problem is approximately solvable in polynomial time,
then so is every other problem in DistNP.

Let AverP denote the class of distributional problems (D, 1 ) for which p is polynomially com-
putable and which are solvable in polynomial time on average. (This definition differs slightly from
those given by Goldreich [5] and Ben-David et al. [2]) Let ApproxP be the class of distributional
problems (D, p) for which p is polynomially computable, and which are approximately solvable in
polynomial time. From the preceding remarks, we have:

Theorem 4 AverP C ApproxP.

Containment in the opposite direction is apparently an open question, though my guess is that
AverP is properly contained in ApproxP. As suggestive evidence (but not proof), I would cite
various problems which are approximately solvable, but for which the existence of an algorithm
running in time polynomial on average seems uncertain. These are described in the following
subsections.

ApproxP and AverP algorithms for finding cliques

To start with, consider a variant of the clique problem. The general clique problem on random
graphs (i.e., graphs in which each edge is independently present with probability 1/2) is known to be
solvable by an algorithm with expected running time n ° (Iogn) [9]. Solving Clique in polynomial time
on average is open, although some progress was made by Phan Dinh, Le Cong, and Le Tuan [16] in
this regard by restricting the edge probabilities or the total number of edges in the graph. Below,
I have obtained positive results by instead restricting the size of the clique being sought.

Let Clique(k(n)) be the problem of deciding if an n-node graph has a k(n)-clique. Let Ro be a
standard uniform distribution on graphs, i.e., the number of vertices n is chosen with probability
proportional to n -2 , and each edge is present with probability 1/2. Then for certain choices of

k(n), (Clique(k(n)),&o) is in ApproxP, as proved below. Note that the "standard" proof that the
Clique problem is NP-complete as described by Hopcroft and Ullman [12] asks only whether the
given n-node graph contains an (n/3)-clique, and thus shows that Clique(n/3) is NP-complete.

Theorem 5 Assume k(n) = w(logn) is polynomially computable. Then (Clique(k(n)),1so) E

ApproxP.

10



Proof: The algorithm A that approximately solves this problem is very simple: On input C and
an n-node graph G, A compares c with

where k = k(n). If c is larger than this number, then A just says "no" (the Nancy Reagan
heuristic), since this number bounds the probability that a random n-node graph contains a k-
clique. Otherwise, if c is very small, A does a brute-force search of all (n) subsets of k vertices
to determine if G has a k-clique. Since c is so small in this case, and since k(n) = w(log n), the
running time is only polynomial in n and 11c. U

It seems unclear in general how to find a certificate that the graph does not contain a k(n)-
clique in the first case above that c is large. On the other hand, when k(n) = cn for some constant
0 < c < 1, I was able to devise a polynomial time on average algorithm:

Theorem 6 Let 0 < c < 1 be fixed. Then (Clique(cn), po) E AverP.

Proof: The algorithm A for solving this problem in polynomial time on average is a bit more
complicated than that in the previous theorem. Given a graph G = (V, E) on n vertices, the
algorithm works as follows:

1. Let d = 1 + [lg(1/c)]. For each set S of d vertices, compute the number of vertices that
are common neighbors of all the vertices of S. (A vertex is its own neighbor, and is also the
neighbor of every other vertex with which it shares an edge.) If for every such set S this
number is less than cn, answer "no."

2. Otherwise, do the same thing for every set of I = 3lgnJ vertices. Again, if the number of
common neighbors of every set of t vertices is less than cn, answer "no."

3. Otherwise, do a brute-force search to determine if the graph contains a cn-clique.

Note that in cases 1 and 2, a certificate is obtained that the given graph has no cn-clique
(assuming n is so large that cn exceeds d and t) since, if the graph did contain a cn-clique, then
any subset of the nodes forming that clique would have at least cn common neighbors.

Let S be a fixed set of d vertices. Let N be the random variable describing the set of vertices
in V - S that are adjacent to every node of S when G is randomly chosen. Then the probability
that a vertex v E V - S is in N is easily computed to be 2-d . Moreover, this event is independent
of other vertices appearing or not appearing in N. Therefore, the cardinality of N is distributed
as the number of successes in n - d trials of a Bernoulli variable which succeeds on each trial with
probability 2

- d . Thus, using Chernoff bounds [1, 11], it can be shown that INI > cn - d with
probability at most 2 -e(n). Note that this also bounds the probability that S has cn common
neighbors in V. Therefore, the chance that any set of d nodes has cn common neighbors is at most
(n) • 2-e (n ) < 2-(). Note also that step 1 takes time n°c).

The analysis at step 2 is similar, although Chernoff bounds are unnecessary. The chance that
a random graph contains a fixed set of I nodes having cn - t common neighbors (again, excluding
themselves) is at most

(n). (n-) 2t(cn1) < - (n - er"n. (±-) < n31-2n.

Also, this step takes time nO(log n)

11



The final step takes time ncn+o( ) . Combining these facts, it follows that the expected running

time for a random n-node graph is at most

n° 0 ) + 2 -e(n) . nO(logn) + n 3 t - 2 cn . ncn+O(1) < nO(')

and therefore, by the remarks in Section 2, the algorithm runs in polynomial time on average. U

An ApproxP algorithm for graph coloring

As mentioned in the introduction, there exist simple-minded algorithms for 3-coloring a graph in
polynomial time on average [3, 18]. These algorithms are easily modified for c-coloring, for any
constant c. It is apparently open whether k(n)-coloring is easy on average when k(n) = W(1).

However, it is possible to construct an algorithm, similar to the one in Theorem 5, that approx-
imately k(n)-colors a random graph when k(n) = o(n/log n). Below Color(k(n)) is the problem of
deciding whether a graph is k(n)-colorable.

Theorem 7 Assume k(n) = o(n/logn) is polynomially computable. Then (Color(k(n)),go) E
ApproxP.

Proof: The algorithm A that approximately solves this problem is very similar to the one desribed
in the proof of Theorem 5. Given c > 0 and an n-node graph, A compares C with some threshold
value. If e is larger than this value, then A answers "no;" otherwise, a brute-force search ensues.

An appropriate threshold value is

0 = n! -• nk . 2
n / 2- n 2/2k

where k = k(n). First, if c is less than 0, then all k n possible colorings of the graph can be tried
in time polynomial in n and 1/c since k(n) = o(n/ log n). If c is more than 0, then a simple "no"
suffices since 0 bounds the probability that a random n-node graph is k-colorable. To see that this
is so, note that a graph G is k-colorable if and only if its vertex set V can be partitioned into k
independent subsets. (A set is independent if no two vertices in the set axe connected.) Thus, the
probability that G is k-colorable is at most

Z 2 - = 1 ( ,A . )

where the sum is over all partitions of V into k nonempty blocks A1,... ,Ak. The number of such
partitions is loosely bounded by n! • nk . Furthermore,

2 - 2 - -2- 2k

by a convexity argument. It follows that 0 bounds the probability of a random graph being k-
colorable.

5 Comparing complexity classes

Levin's paper opened the way to the study of a whole family of new complexity classes. This section
explores some of the relationships among these classes.

We have already discussed DistNP, AverP and ApproxP. A fourth class discussed by Gol-
dreich [5] and attributed to Ronnie Roth is the class AverNP, a natural liberalization of DistNP.

12



Specifically, AverNP consists of those problems (D,p) for which p is polynomially computable and
some nondeterministic machine M solves D in time polynomial on average. That is, there exists a
function I : * N such that 1t(') is computable in polynomial time on average, and there exists
a computation of M that accepts x in I(x) steps if and only if D(x) = 1.

Goldreich makes the interesting observation that every problem in AverNP is reducible to the
Bounded Halting Problem by a simple modification of the proof of completeness for DistNP. Note
that this does not imply that AverNP C DistNP due to the fact that the reduction used may
require more than polynomial time in the worst case. On the other hand, it is easy to see that
AverNP contains both AverP and DistNP.

The purpose of Section 3 was to find a problem in DistNP that is not in AverP unless every
other language in DistNP is as well, i.e., unless DistNP C AverP. This last assumption in fact can
be reduced to a more comfortable assumption from the theory of worst-case complexity. This is
proved by the next theorem which is a slight generalization of one proved by Ben-David et al. [2]:

Theorem 8 If DTime(20 (n )) 1 NTime(2 0 (n)) then DistNP g ApproxP.

Proof: Suppose to the contrary that DistNP C ApproxP. Let D be a decision problem in
NTime(2 0 (n)). Then the unary problem Dt(1x) = D(x) is in NP. (Here, string x is associated
with a natural number in the usual way.) Consider the distribution p'(l) = z/x 2 , where z is some
normalization constant. Then p is polynomially computable, and so (D', p) E DistNP C ApproxP.
Thus, there exists a Turing machine M for which

P, My,) D'(y)] <c

and that runs in time polynomial in lYl and 1/c. Note that this condition implies that if E =

pt(lz) = z/x 2 then M(l,E) = D'(1) = D(x). Therefore, on input x, M(lz,z/x 2 ) computes D(x)
in time polynomial in x = 0(21km). 0

A fundamental question concerning these average-case complexity classes concerns their rela-
tionship to other worst-case complexity classes. For example, if (D,p) E AverP, what can be said
about the complexity of D? The answer is: very little. As an extreme example, if p concentrates
all its probability mass on a single point, then there obviously exists a very fast (constant time on
average) algorithm for (D, p), despite the fact that there exist languages that require an arbitrarily
great amount of time to decide.

A more reasonable question then is to ask about the complexity of D restricted to the support
set of p. Specifically, let Dl, be the decision problem defined by Df,.(x) = D(x) if p'(x) > 0,
and Dl,(x) = 0 otherwise. Further, for distributional complexity class C, let C denote the class of
decision problems

= D, : (D,p) E C}.

Now we can re-ask our question: How does AverP fit into the time complexity hierarchy?
The following theorem answers this question more generally:

Theorem 9

* ApproxP C Exp, and

* AverNP C NExp.

Proof: I prove the first part only; the second part is similar.

13



Let (D, p) E ApproxP. Then there exists a Turing machine M that solves (D,p ) approximately

so that
Pr, [M(x,c) :$ D(x)] < c

and that runs in time polynomial in Ijx and l/c. Since IA is polynomially computable, we can easily
decide whether Mt(x) = 0. Moreover, since the length of the output of a machine computing A is
bounded by the machine's running time; it follows that, for some polynomial p, /l'(x) > 2-P(Iz) if
Y'(z) > 0. Since, as noted in the preceding theorem, M(x,p'(x)) = D(x), it follows that DJu(x)
can be decided in exponential time. U

Finally, it can be shown that this last theorem is the best that can be proved:

Theorem 10

* Exp g AverP, and

* NExp C AverNP.

Proof: Again, I only prove the first part.
Let D E Exp. Then D is accepted by some machine M in time 2P() for some polynomial p. Let

'(x) (x 2- (p( J21)+21,1). Then p is polynomially computable, and DI, = D. Moreover, M accepts D
in polynomial time on average (with respect to p) since, by an easy computation,

xEE 1It xEEO

Together, these theorems completely characterize AverP, ApproxP and XverNP.

Corollary 1

" Exp = AverP = ApproxP,

" NExp = AverNP, and

* NP = DistNP.

Further, we are now ready to fully characterize (almost) the containment relationships among
these average-case complexity classes. This is summarized in the containment graph in Figure 1.
An edge directed from A to B indicates that class A is contained in class B. A dashed edge indicates
that the containment question is open. This graph assumes that NP $ Exp, and DTime(20 (n)) 7

NTime(2°(n)).

Note that there remain two unresolved containment questions. Namely, is ApproxP contained
in either AverP or AverNP?

6 Summary

In this paper, I have reviewed much of what is known about average-case complexity, though I
certainly have not covered everything. I have described Levin's framework for studying average-
case complexity, and have discussed some of the few known complete distributional problems. I
have also suggested a more relaxed notion of "easy on average," which captures the notion of a
problem that can be solved "approximately." Finally, I have discussed how the new average-case
complexity classes relate to one another.

14



Figure 1: The containment graph for some average-case complexity classes

Acknowledgements

This is a revised version of a paper prepared as part of my "area exam." Thanks first to Silvio Micali,
Charles Leiserson and Michael Sipser for serving on my exam committee, and for their comments
and advice. Thanks also to Rafail Ostrovsky and Joel Wein for their help and encouragement.

References

[1] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits
and matchings. Journal of Computer and System Sciences, 18(2):155-193, April 1979.

[2] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of average
case complexity. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing, pages 204-216, May 1989.

[3] Edward A. Bender and Herbert S.Wilf. A theoretical analysis of backtracking in the graph
coloring problem. Journal of Algorithms, 6(2):275-282, June 1985.

[4] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, San Francisco, 1979.

[5] Oded Goldreich. Towards a theory of average case complexity (a survey). Technical Report
531, Technion Computer Science Department, December 1988.

[6] Yuri Gurevich. Complete and incomplete randomized NP problems. In Proceeding of the
Twenty-Eighth Annual Symposium on Foundations of Computer Science, pages 111-117, Oc-
tober 1987.

[7] Yuri Gurevich. The challenger-solver game: Variations on the theme of P=?NP. Bulletin of
the European Association for Theoretical Computer Science, October 1989.

[8] Yuri Gurevich. Matrix correspondence problem is complete for the average case. Unpublished
manuscript, November 1989.

15



[91 Yuri Gurevich. Average case completeness. Journal of Computer and System Sciences, To
appear.

[10] Yuri Gurevich and David McCauley. Average case complete problems. Unpublished
manuscript, April 1987.

(111 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13-30, March 1963.

[12] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, 1979.

[13] David S. Johnson. The NP-completeness column: An ongoing guide. Journal of Algorithms,
5(2):284-299, June 1984.

[14] Leonid A. Levin. Problems, complete in "average" instance. In Proceedings of the Sixteenth
Annual ACM Symposium on Theory of Computing, page 465, April 1984.

[15] Leonid A. Levin. Average case complete problems. SIAM Journal of Computing, 15(1):285-
286, February 1986.

[16] Phan Dinh Dieu, Le Cong Thanh, and Le Tuan Hoa. Average polynomial time complexity of
some NP-complete problems. Theoretical Computer Science, 46(2, 3):219-327, 1986.

[17] Ramarathnam Venkatesan and Leonid A. Levin. Random instances of a graph coloring problem
are hard. In Proceedings of the Twentieth Annual A CM Symposium on Theory of Computing,
pages 217-222, May 1988.

[18] Herbert S. Wilf. Backtrack: An 0(1) expected time graph coloring algorithm. Information
Processing Letters, 18(3):119-121, March 1984.

16



OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Atm: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Atm: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555


